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K (ABSTRACT)
N
g ® i o . .

o Water diffusion through the adhesive is the rate controlling factor for the durability of many
: metal-to-polymer bonds exposed to moist environments. A methodology is proposed, to relate the
)

b diffusion coeflicient of water in polymers to temperature, strain and penetrant concentration. The
M)

RS approach used is based on well known free volume theories. In the rubbery state, it is assumed that
l
'r' the transport kinetics is governed by the constant redistribution of the free volume, caused by the
b

d segmental motions of the polymeric chains. An expression for the diffusion coefficient is inferred
¥
2 @ from the temperature, strain and pcuctrant concentration of the free volume. It is shown that the
::l free volume treatment can be extended to the glassy range by introducing a few additional features
t

i . . . .

K in the model. The stress dependence of solubility as well as the non-fickian driving forces con-
()
1

’; ° tributing to mass transport are predicted from the Flory-Huggins theory. Experimental validation
R of the concentration dependence and temperature dependence of the diffusion coefficient is shown.
. The effect of mechanical strain on diffusivity and solubility in the glassy state is also investigated
>
experimentally, using both the permeation and sorption techniques. Good agreement with theory
L ¢ is generally found. The coupling mechanisms between the diffusion process and the viscoclastic
: response of the adhesive are explained. A numerical scheme for fully coupled solutions is imple-
. mented in a two- dimensional finite element code. A few numerical solutions are shown. In the
K.

¢ case of bonds undergoing unusually harsh environmental exposure however, altcrnate methods
.; must be sought for durability characterization and prediction. This is illustrated with the case of
D)

y rubber-to-steel joints exposcd to a cathodic potential in scawater. The mecchanical analysis of a
S durability specimen is presented and a procedure for debond prediction is suggested.
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OBJECTIVES:

Adhesively bonded joints have potential for wide usage in a variety of structural applications.
In many present day applications, conventional fastencrs such as bolts, fivets, welds ctc., are found
to be unsuitable, particularly when the components are made of polymeric or composite matenal.
Penetration methods (i.e. drilling holes, etc.) give rise to high stress concentrations and, in the case
of composites, sever the fiber reinforcement, causing a reduction in joint strength. These problems
can be overcome in a simple and inexpensive way by replacing conventional fasteners with adhesive
bonds. Unfortunately, the promise of adhesive bonding has existed for over a decade, with slow
progress being made towards their use in engineering designs. While adhesive bonds are being used,
they are largely confined to low-stress applications. They have yet to find their place in highly
stressed primary structural applications in aerospace, automobile, composites or similar industries
wherein lie their huge potential.

Why has industry not fully exploited the potential of adhesive bonding? One reason is that their
integrity over the lifetime of a structure - say 5 to 20 years of service - cannot yet be predicted in a
satisfactory manner. This problem can be traced to the fact that adhesive bonds have properties
that are time dependent. Adhesives are known to creep in service and hostile environmental pa-
rameters, such as temperature and moisture, tend to accelerate the degradation process, making it

rather difficult to predict the structural integrity in a design lifetime.
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Moisture induced failure of polymer-to-metal interfaces is a severe problem in applications

P APER o
-n’ -

involving coatings, scalants and adhesives. Such effects are particularly pronounced when the

L

adherend and,or the adhesive are subject to moisture-induced degradation, and when the displace-

et

:. o ment of the bond-line by water is energetically favorable. Thermodynamics of surface energics and
;') work of adhesion has proved quite successful for predicting the ultimate stability or lack of stability
i. .t.; of a joint. Unfortunatcly, these approaches have not been able to incorporate kinetics to provide
: ? predictions for the time to failure. A significant challenge is to develop a rational basis to combine
.\ thcrmodynamics, mechanics and transport kinetics into a tool for an understanding of bond du-

rability. Since the problem of durability is strongly interdisciplinary in nature, a scheme is needed
in which ideas from all the key disciplines involved are combined in an intcgrated computational
tool. Such a scheme would provide a predictive capability by which the results of small scale tests
could be used to determine the lifetime of a given joint. A need therefore exists for improved ex-
perimental characterization techniques and for advanced computational procedures. The successful
conclusion of such a research program would give the designer and manufacturers: a better char-
acterization of their products, the possibility of enlarging markets by developing better user confi-
dence in structural adhesives, and lowered costs through reducticn in unrealistic safety factors.
The following generic research objectives are proposed:
(1) Develop or improve phenomenological descriptions of the mechanical response of adhesives,
and of moisture diffusion in adhesives.
(2) Develop adequate characterization techniques for the mechanical behavior of the adhesive, for
moisture diffusion along the bond line and for environmentally-induced failure.
(3) Incorporate the resulting predictive capabilities into a well documented computational tool.
This dissertation addresses, in varying degrees of depth, the three suggested research avenues.
As we enter more detailed theoretical discussions, an effort will be made not to lose sight of the final

goal, viz: providing an enginecring solution to the durability problem. This means that although

oo an effort will be made to understand mechanisms at the molecular level, a lack of complete under-
. .- ..- . - . . . . .
A standing of a fundamental question will not deter us from describing the material response in a
, . mathematical manner. Following, is a brief outline of the proposed study of the durability problem:
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We first observe that moisture plays a central role in the degradation process of adhesive
joints. Obviously, there are two main rate limiting parameters: the transport rate of moisture and
the rate of environmental degradation. For this reason, a durability study should naturally proceed
along two different directions: (1) the study of moisture diffusion and (2) the determination of a
failure criterion. While a general theoretical approach can be developed for the former, no general
mcthod exists for the latter because failure mechanisms arc too specific to a given adherend-
interphase-adhesive system. Therefore, a general theoretical approach will be proposed for the
diffusion problem, while an empirical approach will be favored for the failure study.

The underlying idea for modelling diffusion will be based on the free volume concept, i.e., that
the motion of diffusing molecules depends on the space available to them in the form of vacancies
between polymer chains. Since this free volume is also known to control the rate of creep or re-
laxation, a unified mechanical-diffusional theory can be used. While our reasoning initially will
occur at the molecular level, the proposed model will be entirely phenomenological, mainly to re-
duce material characterization to an engineering level. The problem of the transport rate will be
addressed by adapting and enhancing existing diffusion and viscoelasticity theories based on free
volume concepts.

The sccond stage in the study of durability, involves the loss of mechanical strength. It has
been established that there are two main failure modes in adhesive joints: cohesive (inside the ad-
hesive) and interfacial (along the boundary between the adhesive and the adherend). Whereas cri-
teria for cohesive failure are already available, much work remains to be done on the problem of
interfacial failure. The difficulty arises from the fact that interfacial failures usually occur in moist
environment as a result of a chemical or physical attack on the interphase. Since these degradation
phenomena are difficult to represent analytically, empirical methods are often used. One such
method, based on the critical concentration concept will be reviewed and tested experimentally.

The limit of the general methodology proposed above, is found in the case of joints exposed
to unusually harsh conditions. This will be illustrated with the case of rubber-to-steel bonds
undergoing cathodic debonding in seawater. An alternate methodology will be proposed and a

description of a durability specimen will be given.
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° POLYMERS. GOVERNING EQUATIONS
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| @
Introduction:
[\
Moisture may enter a bond by diffusion through the adhesive, through the adherends or by
¢ moving along an interphase region. If one assumes that water molecules have the same degradation
effect on the adhesive and interphase region, regardless of their migration path, then it becomes of
ultimate concern to be able to understand and predict the kinetics of moisture ingression via the
. different paths. This chapter investigates an important mode of moisture intrusion in a joint: bulk
diffusion through the adhesive.
Earlier work has demonstrated that the diffusion rate in a polymer can be increased by a
number of factors such as temperature, stress and damage. In particular, "non-Fickian” kinetics
¢
often associated with a sharp diffusion front, has been attributed to a strong dependence of the
1. A MODEL FOR DIFFUSION IN POLYMERS. GOVERNING EQUATIONS: 4
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diffusion coefficient on concentration and/or moisture induced damage. Externally applied stresses,

residual stresses, and swelling stresses are known to affect diffusion rate. These various fcatures
(with the exception of damage) are reviewed in light of their usefulness to the specific problem of
moisture diffusion in adhesive joints. Although damage can significantly enhance moisture
ingression, it is reasonable to exclude it from this preliminary investigation because joints in service
in moist environments are normally loaded to a small fraction of their ultimate breaking strength
(dry), thereby minimizing damage arising solely from the applied load.

In Chapter 1, the theoretical background leading to the diffusion governing equations, will
be reviewed in detail. Although the key concepts underlying the proposed theoretical treatment have
been studied by several other workers, some novelty is introduced in the mathematical formulation
of the constitutive relations. One of the major objectives of this study is to offer a treatment uni-
fying both the diffusion behavior and mechanical behavior into a single phenomenological model.
It will be shown that the unified approach not only facilitates the description of the coupling be-
tween diffusion and stress relaxation, but also leads to a common material characterization. Many
workers have recognized the importance, in the case of polymers, of the interdependence between
the diffusion process and stress relaxation. Unfortunately, the solutions proposed to date have either
dealt with specific boundary value problems, or have failed to include in one single treatment, all
the known forms of coupling. It follows that the solutions offered were often severely restricted in
their conditions of applicability. By contrast, this treatment is meant to be as general as possible,
and to be implemented in a finite element code. Unlike closed form solutions, the Finite Element
Method can deal with almost any kind of boundary value problem of interest to designers. In the
field of adhesion engineering, our goal is to provide designers with a general computational method
to predict moisture intrusion into adhesive bond lines or into composite matrices, when they are
subjected to a combination of external loading and internal swelling.

Chapter 1 is introductory and thus should be appraised only in the context of the entire work.
In particular, Chapter 1 is not sufficient to fully understand the effect of stress and stress relaxation

on diffusion. The constitutive rclations for the mechanical behavior and swelling behavior are dis-

cussed in Chapter 3.
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General Form of the Diffusion Governing Equation:

Let us consider a binary mixture consisting of a penetrant of small size (e.g.: water) perme-
ating a polymer. The polymer is isotropic, amorphous and can be in either the glassy, leathery or
rubbery state. It is natural to assume that the small penetrant molecules are much more mobile
than the polymeric macromolecules. It follows that mass transport in this system can be described
in terms of one flux only, namely that of the penetrant, because the polymer can be considered as
a fixed reference. In general, the mass flux of penetrant can be scparated in four components, each
corresponding to a class of thermodynamic driving force! . Each driving force gives rise to small
perturbations in the random walk of the diffusing species. Assuming the driving torces are uncou-

pled, and the departure from randomness small, the resulting macroscopic fluxes are additive:

J=J 13T+ +J¢ (1)
where: J¢ = Fickian mass flux (entropy driven)
JT = thermally driven mass flux
Jo = stress induced mass flux
J¢ = forced mass flux (driven by an cxternal force)

(Bold characters will represent vectorial quantities throughout this dissertation)

The Fickian flux arises as a result of concentration gradients and is given by:

C=_pvC )
where: = diffusion coefficient
= penetrant concentration
= gradient operator
1. A MODEL FOR DIFFUSION IN POLYMERS. GOVERNING EQUATIONS: 6
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i Expression (2) is known as Fick’s First Law as long as D is a constant or a function of C oniy. 4
5y It will be shown later that the diffusion coefficient is a function of temperature and stress (or strain)
k)
D as well:
L)
o
)
\ D=D(CT, o) 3 |
3
N where: T = temperature
!
K\ o = stress.
{ The thermal flux is driven by temperature gradients and is known as the Soret Effect!: 1
O,
¥
)
. T p’c
o J'=- 2T VinT 4
,:’ where: DT = thermal diffusion coefficient
&
o
W)
N Thermal diffusion becomes a significant component of the overall flux when an adhesive
)
’ undergoes frequent temperature fluctuations. Sudden variations in external temperature give rise 1
/‘ )
' to temperature gradients internally which may persist for a long time, especially when the structure
: has a low thermal conductivity.
i The stress induced flux is produced by a non-uniform stress field? and is given by: ﬂ
]
R TRT ©)
3
4 where: R = pgas constant ¢
"
b W, = potential energy function
;
There is no general form for W,. It is a function of the local entropy change of the penetrant {
: when the polymer is subject to a stress (strain) field. Since the stress distribution within a joint is
8
: rarely uniform, proper attention should be given to this effect a priori. Furthermore, if the adhesive
, tends to swell by a large amount in the presence of the penetrant, J° could conceivably become 4
quite large because differential swelling across the adhesive is generally constrained by stiff
y 1. AMODEL FOR DIFFUSION IN POLYMERS. GOVERNING EQUATIONS: 7
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adherends, leading to large pressure gradients internally, under either sorption or desorption proc-
esses. A possible form for W, will be suggested in this chapter.

The forced diffusion flux is of importance in cases when the penetrant molecules are subject
to an external force field (e.g., electrical or inertial). In an adhesive joint such a field may exist lo-
cally in the region known as the interphase. Close to a hydrophilic oxide layer, the intermolecular
field experienced by a water molecule can be more intense than in the bulk polymer. This disparity
is expected to cause local perturbations in the diffusive flux. It should be noted that, in this article,
J¢ refers to a component of the flux arising from any external force ficld, with the exception of stress
ficlds. The ~dect of stress ficlds is already incorporated in the J° component of the flux.

Let us now consider the total flux J. Since conservation of mass must be satisfied, we must

have:

& v (6

where t is time, leading to the final governing equation:

XLov. {D(C, T, a)[vc+—R9T— VW,,]+JT+ J¢} 0

In the remaining discussion, the problem will be reduced to that of the diffusion in a medium

of uniform temperature and in the absence of.an external force field (J7=J¢=10). Expression (7)

shows that the effect of stress is twofold: (1) stress field gradients give rise to a thermodynamic force

VW, and (2) stress also affects the mobility of the penetrant, quantified here by the diffusion coef-

ficient. The effect of stress on mobility does not disappear in a uniform stress field, although the
stress induced driving force does vanish.

At this point, it is useful to recall that polymeric adhesives are viscoelastic in nature. Thus,

our governing equation is valid instantaneously only. Stress and stress gradients need to be updated

constantly in order to properly account for the rheology of the material. The problem of the cou-

pling between the diffusion boundary value problem and the viscoclasticity boundary value problem

1. A MODEL FOR DIFFUSION IN POLYMERS. GOVERNING EQUATIONS: 8
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will be addressed in more detail in Chapter 3. For the time being, we just need to k. » in mind that
the governing equation is implicitly time dependent on the right hand side of the equation.

A thorough literature review?™’ led us to conclude that expression (7) contains many of the
known features necessary for modelling non-Fickian transport in the abscnce of damage. These

features are:

1. the history dependence of the diffusion coefficient, in this case, through the coupling with

the viscoelastic response,

2. the effect of a non-uniform stress distribution, and

3. the concentration dependence of the diffusion coefficient. (Although listed as a source
of anomalous behavior, this concentration dependence does not in fact violate Fick's

Second Law in its most general form).

Note that the proposed governing equation is by no means the only possible theoretical model.
It just contains provision for important features often found in separate theories, but not in a uni-
fied approach.

The stress dependence of the solubility (accompanied here by an implicit time dependence)
has also been identified as a source of non-Fickian behavior’™*. This difficulty can be addressed in
the framework of a numerical analysis, by normalizing the concentration with respect to the satu-
ration level at the current time step, and by providing an adequate model for the stress dependence

of solubility. Such a model will be discussed later in this chapter.

1. AMODEL FOR DIFFUSION IN POLYMERS. GOVERNING EQUATIONS: 9
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A Model for the Diffusion Coefficient Based on the

Cohen-Turnbull Theory:

The purpose of this section is to establish a general theory for predicting the diffusion coeffi-
cient of small molecules in polymeric materials. Particular attention will be devoted to the tem-

perature dependence, stress dependence and penetrant concentration dependence of D .

The Cohen-Turnbull Model:

The Cohen-Turmbull model'®!* was originally developed to describe self-diffusion in an ideal
liquid made of hard spheres, but it has been extended to concentrated solutions and undiluted
polymers. The model is based on the idea that molecular transport occurs by the movement of
molecules into voids, with a size greater than some critical value. Voids are formed by the statistical

redistribution of the free volume. Free volume is defined as:

V= V-1, 8)

=
i

where: specific volume

occupied volume

<

Furthermore, it is assumed that:

1. Free volume is continually redistributed with time, and that no local free energy is required for
redistribution. As a result, distribution is random.
2. Molecular transport occurs by the movement of diffusing molecules into voids of at least their

molecular size, which are formed as a result of the random redistribution of free volume.

1. AMODEL FOR DIFFUSION IN POLYMERS. GOVERNING EQUATIONS: 10
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:z. In the case of the self diffusion (or viscous flow) of a polymer, the molecular jump represen-
0, tation must be replaced by the concept of segmental rearrangements which can occur whenever the
N
; surrounding free volume reaches some critical value V.. In other words, in order for a portion of
\ L]
‘;a’ the polymeric chain to take a new conformation, the “cage” formed by nearest neighbors must reach
i
o a cnitical size.
c;:;
t . . . .
ot The probability that n increments of free volume of average size ¥, would accumulate into a
[}
Y . V. .
o void of size V, is proportional to exp(— 6§ —Vi ), where @ is an overlap factor arising from the fact
1 4 s
‘..,, that the same void is available to more than one molecule. In the case of viscous flow, critical
‘ 1}
:s : volume V, must be large enough to allow a local rearrangement of the chain conformation, whereas
()
f
&
:‘ in the case of the diffusion of a small penetrant, ¥, must be large enough to allow a local molecular
_. jump of the penetrant. Thus V, is a characteristic of the polymer only in the case of self diffusion
¥
:S (or viscous processes) and V, is a characteristic of a given polymer-penetrant pair in the case of the
'.s diffusion of a small penetrant molecule. From the form of the probability distribution, it follows
Y that the diffusion coefficient contains an activation volume term:
0
i
u..:
. Vv,
:2' D=D, exp(—0—=5) 9
. ° Z
Y
)
v"“.
1
::'.:‘ Equation (9) implies that free volume is the only parameter involved in describing transport
»
L)
;',:. phenomena. This theory is not sufficient however, at temperatures too low relative to the glass
.
® transition temperature 7,, when motions of the chains within the free volume are too slow. Nor
X
3 . . «
i does it apply at very high temperatures where activation energy barriers must be overcome®? . Note
b)
that in the framework of the Cohen-Turnbull theory the free volume is not the true free volume in
R
the geometric sense, but only that portion of the total free volume which can be redistributed with
o no local change in free energy. It follows that the occupied volume V, defined here is not the hard
L)
)
3 shell volume, but a larger quantity which can be changed by a stress field (i.e. the occupied volume
s
@ is compressible).
A
b
;.: 1. A MODEFEL FOR DIFFUSION IN POLYMERS. GOVERNING EQUATIONS: 11
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The Macedo-Litovitz and Vrentas-Duda Theories:

Macedo and Litovitz!? introduced an expression for the self-diffusion coefficient very similar

to that of Cohen and Tumbull, except that it contains an activation energy factor:

V,
D=D, exp(-—%) exp(—O-V;—> (10)

It was postulated that in addition to the minimum hole-size requirement, an encrgy barrier must
be surmounted. When inverted, expression (10) describes a viscosity. The obtained form is virtually
identical to a known extcnsion of the WLF cquation including an Arrhenius-like temperature
dependence®®. In the glassy state (non-equilibrium), the temperature dependence predicted by the
elementary WLF equation is known to be incorrect and an Arrhenius temperature dependence has
been widely reported. This finding is consistent with expression (10) and will be the object of fur-
ther discussion later.

Vrentas et al.'* developed a constitutive behavior for the self diffusion in polymers based on
equation (10). Their treatment of the free volume is more complex than the one used in this work.
In addition to the free volume treatment of Cohen and Turnbull, the Flory-Huggins polymer sol-
ution theory and some aspects of the entanglement theory of Bueche are employed. An average
frece volume V, as well as an average critical volume V. are defined for the binary mixture sorbent

(subscript 1) - polymer (subscript 2):

Vi=ky o,(kyy + T = Tgy) + kypary(kyy + T— Tpy) (11)
— Awn A
Vc=w|V1 +w24’V2 (12)
where: w, = mass fraction of component i;
T, = glass transition temperature of component i;
ky ky = free volume parameters for the solvent;
kiyk;; = free volume parameters for the polymer.
1. A MODEL FOR DIFFUSION IN POLYMERS. GOVERNING EQUATIONS: 12
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¢ = ratio of the critical molar volume of the penetrant jumping
unit to the critical molar volume of the polymer jumping unit
Vi = gspecific critical hole free volume of component i.

In the limit, when the mass fractior of penctrant 1s small, Vf and ¥, become mairly polymer
dependuent and the above approuach becomes equivalent to the one shown herein. Qur simupler ap-
proach, in which the free volume of the mixture is dominated by that of the polymer is very rea-

sonable because polymers with a large moisture solubility are not suitable for the structural adhesive

applications we are concerned with.

Extension of the Doolittle Theory to the Problem of Diffusion of Small

Molecules:

Doolittle proposed an empirical equation relating polymer viscosity to the free volume, which

was found to apply to polymers in their rubbery range!’. Fluidity F, the inverse of viscosity is given

by:

F=dA"¢ Al
= exp( — B % ) (13)
S

where 4 and B are empirical constants. The parallelism between equations (9) and (13) is striking.
This was explained earlier by the fact that the elementary process for viscous flow and the elcmen-
tary process for sorbent diffusion are dentical.  In order to prove that equations (9) and (13) are
identical mathematically, one can use linstein’s equation for the diffusion cocflicient and Stokes’

cquation for the friction constant. According to Einstein’s equation for the diffusion cocfficient':
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